Faculty of Engineering Management

STUDY MODULE D	ES	CRIPTION FORM	l		
				Code 011102121011126444	
Field of study Safety Engineering - Full-time studies - Secor	nd-	Profile of study (general academic, practic general academ		Year /Semester	
Elective path/specialty Work Safety Management		Subject offered in: Polish		Course (compulsory, elective) elective	
Cycle of study:	Form of study (full-time,part-time)				
Second-cycle studies	full-time				
No. of hours Lecture: 15 Classes: 30 Laboratory: -		Project/seminars:	15	No. of credits	
Status of the course in the study program (Basic, major, other)		university-wide, from anoth		-	
other					
Education areas and fields of science and art				ECTS distribution (number and %)	
technical sciences			100 5%		
Technical sciences			100 5%		
Responsible for subject / lecturer:	Re	sponsible for sub	ject /	lecturer:	
dr inż. Marcin Butlewski		dr inż. Anna Stasiuk Piekaraska			
email: marcin.butlewski@put.poznan.pl		email: anna.stasiuk-piekarska@put.poznan.pl			
tel. 605883000		tel. 061 665 35 79			
Wydział Inżynierii Zarządzania		Wydział Inżynierii Zarządzania			
ul. Strzelecka 11 60-965 Poznań	- 1	ul. Strzelecka 11 60-965 Poznań			

Prerequisites in terms of knowledge, skills and social competencies:

4	Knowledge	has basic knowledge of equipment, objects and technical systems life cycles		
		knows main methods, techniques and materials that are applied in the process of solving complex engineering tasks relating to the studied area		
		has indispensable knowledge of understanding social, economic, legal and other non-technical conditions of an engineering activity and thieir inclusion in engineering practice		
2	Skills	can acquire data from literature, database or other properly matched sources, also in English		
3	Social competencies	can work in a group		

Assumptions and objectives of the course:

The main objective of the course is to acquaint the students with the methods of engineering design and ways that allow to solve engineering problems in a syntetic and practical way.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. has basic knowledge of equipment and machines life cycle [K2A_W15]
- 2. knows fundamental methods, techniques, tools and materials that are apllied in solving simple engineering tasks relating Security Engineering [K2A_W16]
- 3. knows phenomena that are characteristic of processes in products design [K2A_W09]
- 4. have a basic understanding of the life cycle of equipment, facilities, and technical systems in the context of ergonomic conditions and know the phase of the production process, the division of labor process into its constituent parts, the specificity of human tasks in the techniques of manufacturing, in services and conceptual work and office design principles [K2A_W21]
- 5. knows the ways of overcoming the contradictions technical analysis of ways of overcoming the technical problems on the example of inventive problem solving algorithm, knows the rules of modeling decision-making processes with regard to cognitive psychological factors [K2A_W24]

Skills

- 1. can conduct a critical analysis of the ways in which technical solutions [K2A_U15]
- 2. can suggest improvements (advancements) of existing technical solutions that are characteristic of Security Engineering [K2A_U16]
- 3. can assess the utility of routine methods and tools for solving simple engineering tasks [K2A_U17]

Faculty of Engineering Management

Social competencies:

- 1. . can make use of analytic, simulation and experimental methods to formulate and solve engineering tasks [K2A_K1]
- 2. can come up with a suggestion how to make use of state-of-the art technoogy (techniques and technology) within products design [K2A_K3]
- 3. can discern dependencies of causal incidents in the process of achieving set goals and rank the pertinence of alternative or competitive tasks [K2A_K4]

Assessment methods of study outcomes

Project

The project is implemented in stages, which are presented to the lecturer, and then in printed form are given back to the last classes.

The final grade will consist of partial marks and the result of the project presentation

Exercises

Exercises are accounted for by forming evaluations, from which the average is taken out.

The lecture is counted by participation in a quiz implemented through the kahoot platform

Course description

Design definitions, The need to design, Stages of design, Guidance for the design, Characteristics of design process, Design errors, Role and characteristics of a designer, Chapter exercises, Products and their features, What is a product, Phases of a products? lifecycle, Constructive criterion of products, Groups of users in the process of design, The product from the point of view of design, Selected matketing features of products, Methods in design, Historical methods for design, Systematic methods of design, Value analysis, ARZW Algorithm of solving inventive tasks, Collaborative Strategy for Adaptable Architecture, Systems engineering, Page?s cumulative strategy, Limited search, Design of systems man-technical object, Descriptively exploratory methods of design, Study of the users? behavious, Setting an objective, Collection and data reduction. Questionnaires and survey interview, System testing, Detecting visual inadequacies, Methods structuralizing a project problem, AIDA Analysis of Interconnected Decision Area, Functional innovation, Innovation through boundaries modification, Classification of data useful in design, Matrix interaction, System transformation, Exploratory methods of design, Brainstorm, Altszuler and Flowmaker?s inventive tricks, Cards and morphological analysis, Scamper, Synthesis, Evaluative methods of design, Choice of criteria, Personae in the design, Design tools, The need for design tools, computer-related design tools.

DIDACTIC METHODS

Problem lecture

Conversational lecture

Case method (case study)

Basic bibliography:

- 1. Butlewski M., Projektowanie i ocena wyrobów wybrane zagadnienia, Politechnika Poznańska 2012
- 2. Altszuller H., Algorytm wynalazku, Wiedza Powszechna, Warszawa 1972.
- 3. Asimow M., Wprowadzenie do projektowania w technice, WNT, War-szawa, 1967
- 4. Branowski B., Metody twórczego rozwiązywania problemów inżynier-skich, Wydawnictwo Wielkopolska Korporacja Techniczna NOT, Po-znań 1999
- 5. Dobrzański L., Materiały inżynierskie i projektowanie materiałowe WNT Warszawa 2006
- 6. Gasparski W. (red.), Projektoznawstwo. WNT, Warszawa, 1988
- Jalve E. Projektowanie form wyrobów przemysłowych. Zasady postę-powania, Arkady Warszawa 1984
- 8. Jones J. Ch. Metody projektowania WNT 1977 Warszawa
- 9. Slack L., Czym jest wzornictwo?, ABE Dom wydawniczy, Warszawa 2007, s. 72-73

Additional bibliography:

- 1. Gasparski W., Projektowanie ? koncepcyjne przygotowanie działań. PWN, Warszawa, 1978
- 2. Butlewski M., Ergonomiczne kryteria projektowania elementów bezpieczeństwa zorientowane na potrzeby osób starszych, Logistyka nr 5/2014, Instytut Logistyki i magazynowania, Poznań, 2014, ss.188-196 ISSN 1231-5478
- 3. Butlewski M., Heuristic Methods Aiding Ergonomic Design, Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for elnclusion, Lecture Notes in Computer Science Volume 8009, 2013, pp 13-20
- 4. Krick E. V., Wprowadzenie do techniki i projektowania technicznego, WNT, Warszawa 1975

Result of average student's workload

Activity	Time (working
	hours)

Poznan University of Technology Faculty of Engineering Management

1. lecture	15
2. practicals	30
3. project	15
4. individual work	15

Student's workload

Source of workload	hours	ECTS
Total workload	75	5
Contact hours	60	3
Practical activities	45	2